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Abstract
We propose a novel method for Acoustic Event Recognition
(AER). In contrast to speech, sounds coming from acoustic
events may be produced by a wide variety of sources. Further-
more, distinguishing them often requires analyzing an extended
time period due to the lack of a clear sub-word unit. In order
to incorporate the long-time frequency structure for AER, we
introduce a convolutional neural network (CNN) with a large
input field. In contrast to previous works, this enables to train
audio event detection end-to-end. Our architecture is inspired
by the success of VGGNet [1] and uses small, 3×3 convolu-
tions, but more depth than previous methods in AER. In order
to prevent over-fitting and to take full advantage of the model-
ing capabilities of our network, we further propose a novel data
augmentation method to introduce data variation. Experimen-
tal results show that our CNN significantly outperforms state
of the art methods including Bag of Audio Words (BoAW) and
classical CNNs, achieving a 16% absolute improvement.

Index Terms: convolutional neural networks, data augmenta-
tion, large input field, acoustic event recognition.

1. Introduction
Scenes typically contain many sound sources. While speech is
arguably one of the most important types, non-speech sounds
such as music or laughter provide important information as
well. In most conversations no mention is made of the envi-
ronment, like its location or people and objects present. Au-
tomatic speech recognition (ASR) could benefit from having
such contextual knowledge though [2]. Knowing the type of
non-speech sounds improves the performance of source separa-
tion and speech enhancement [3]. Furthermore, multi-media
tasks such as video classification [4] and video summariza-
tion [5] have been shown to improve when including audio
information. Acoustic EventRecognition (AER) is attracting
more and more attention also due to new applications incl.
surveillance [6, 7, 8], multimedia content retrieval [9] and audio
segmentation [10, 11].

Traditional methods for AER apply techniques from ASR
directly. For instance, Mel Frequency Cepstral Coefficients
(MFCC) were modeled with Gaussian Mixture Models (GMM)
or Support Vector Machines (SVM) [12, 13, 14, 15]. Yet, ap-
plying standard ASR approaches leads to inferior performance
due to differences between speech and non-speech signals.
Thus, more discriminative features were developed. Most were
hand-crafted and derived from low-level descriptors such as
MFCC [16, 17], filter banks [18, 19] or time-frequency descrip-
tors [20]. These descriptors are frame-by-frame representations
(typically frame length is in the order of ms) and are usually

modeled by GMMs to deal with the sounds of entire acoustic
events that normally last seconds at least. Another common
method to aggregate frame level descriptors is the Bag of Audio
Words (BoAW) approach, followed by an SVM [17, 21, 22, 23].
These models however discard the temporal order of the frame
level features, causing considerable information loss. More-
over, methods based on hand-crafted features optimize the fea-
ture extraction process and the classification process separately,
rather than learning end-to-end.

Recently Deep Neural Networks (DNNs) have been very
successful at many tasks, including ASR [24, 25], image classi-
fication [26, 1], and visual object detection [27]. One advantage
of DNNs is their capability to jointly learn feature representa-
tions and appropriate classifiers. Supported by large amounts of
training data, more recently, deeper architectures further pushed
the state-of-the art for several competitions in computer vi-
sion [1]. In comparison, few AER methods rely on DNNs.
One reason is the lack of large, publicly available datasets.
In [28, 29], DNNs were built on top of MFCCs. Miquel et
al. [30] utilize a Convolutional Neural Network (CNN) [31] to
extract features from spectrograms. These networks are still rel-
atively shallow (e.g. 3 layers). Furthermore, the networks take
only a few frames as input and the complete acoustic events are
modeled by Hidden Markov Models (HMM) or simply by cal-
culating the mean of the network outputs, which is too simple
to model complicated acoustic event structures.

In this work, we introduce novel network architectures with
up to 9 layers and a large input field. The large input field al-
lows the networks to directly model entire audio events and be
trained end-to-end, as depicted in Fig. 1. Our network architec-
ture is inspired by VGG Net [1] which obtained second place in
the ImageNet 2014 competition and was successfully applied
for ASRs [32]. The main idea of VGG Net is to replace large
(typically 9×9) convolutional kernels by a stack of 3×3 kernels
without pooling between these layers. Advantages of this archi-
tecture are (1) additional non-linearity hence more expressive
power, and (2) a reduced number of parameters (i.e. one 9×9
convolution layer with C channel has 92C2 = 81C2 weights
while three-layer 3×3 convolution stack has 3(32C2) = 27C2

weights). Our first goal is to adapt the VGG Net architecture to
AER. In order to train our network we further propose a novel
data augmentation method, especially effective for AER. For
our experiments, we created a new dataset harvested from the
Freesound repository [33] and conducted acoustic event classifi-
cation. Experimental results show that our deeper CNN signifi-
cantly outperforms several baseline techniques, including state-
of-the-art methods based on BoAW and classical DNNs. We
further show that the proposed data augmentation method im-
proves the performance by more than 12%.
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Figure 1: Our deeper CNN models several seconds of acoustic event sound directly and outputs the posterior probability of classes.

Table 1: The architecture of our deeper CNNs. Unless men-
tioned explicitly convolution layers have 3×3 kernels.

Baseline Proposed CNN

#Fmap DNN Classic CNN A B

64 conv5×5 (3,64) conv(3,64) conv(3,64)
pool 1×3 conv(64,64) conv(64,64)

conv5×5(64,64) pool 1×2 pool 1×2

128 conv(64,128) conv(64,128)
conv(128,128) conv(128,128)

pool 2×2 pool 2×2

256 conv(128,256)
conv(128,256)

pool 2×1

FC FC4096
FC2048 FC1024 FC1024 FC2048
FC2048 FC1024 FC1024 FC2048

FC28 FC28 FC28 FC28

softmax

#param 258×106 284×106 233×106 257×106

2. Architectural and Training Novelties
2.1. Convolutional Network Architecture

We propose two CNN architectures, adapted to AER, as out-
lined in Table 1. Architecture A has 4 convolutional and 3
fully connected layers, while Architecture B has 9 weight lay-
ers: 6 convolutional and 3 fully connected. In this table, the
convolutional layers are described as conv(input feature maps,
output feature maps). All convolutional layers have 3×3 ker-
nels, thus henceforth kernel size is omitted. The convolution
stride is fixed to 1. The max-pooling layers are indicated as
time × frequency in Table 1. They have a stride equal to
the pool size. All hidden layers except the last fully-connected
layer are equipped with the Rectified Linear Unit (ReLU) non-
linearity. In contrast to [1], we do not apply zero padding before
convolution since the output size of the last pooling layer is still
large enough in our case. The networks were trained by min-
imizing the cross entropy loss L with l1 regularization using
back propagation:

arg min
W

∑

i

L(Xi, Yi,W ) + λ‖W‖1 (1)

where Xi, Yi,W are the ith input, label and network parame-
ters, respectively. λ is a constant which is set to 10−6 in this
work.

2.2. Large input field

In ASR, few-frames descriptors are typically concatenated and
modeled by GMM or DNN [24, 25]. This is reasonable since
they aim to model sub-word units like phonemes which typi-
cally last less than a few hundreds of ms. The sequence of sub-
word units is typically modeled by a HMM. Most works in AER

also follow similar frameworks, where signals lasting from tens
to hundreds of ms are modeled first. These small input field
representations are then aggregated to model longer signals by
HMM, GMM [10, 12, 30, 9, 34] or a combination of BoAW
and SVM [21, 22, 23]. Yet, unlike speech signals, non-speech
signals are much more diverse even within a category and it is
not clear that a sub-word approach is suitable for AER. Hence,
we design a network architecture that directly models the entire
acoustic event, based on a single input of multiple seconds. This
also enables the networks to optimize the parameter end-to-end.

2.3. Data Augmentation

Since the proposed CNN architectures have many hidden lay-
ers and a large input field, the number of parameters is high, as
shown in the last row of Table 1. A large number of training
data is vital to train such networks. Jaitly et al. [35] showed
that the data augmentation based on Vocal Tract Length Pertur-
bation (VTLP) is effective to improve ASR performance. VTLP
attempts to alter the vocal tract length during extraction of de-
scriptors, such as a log filter bank, and perturbs the data in a
certain non-linear way.
In order to introduce more data variation, we propose a differ-
ent augmentation technique. For most sounds coming with an
acoustic event, mixed sounds from the same class also belong
to that class, except when the class is differentiated by the num-
ber of sound sources. For example, when mixing two different
ocean surf sounds, or of breaking glass, or birds tweeting, the
result still belongs to the same class. Considering this property
we produce augmented sounds by randomly mixing two sounds
of a class, with randomly selected timings. In addition to mix-
ing sounds, we further perturb the sound by moderately modi-
fying frequency characteristics of each source sound by boost-
ing/attenuating a particular frequency band to introduce further
varieties while keeping the sound recognizable. An augmented
data sample saug is generated from source signals for the same
class as the one both s1 and s2 belong to, as follows:

saug = αΦ(s1(t), ψ1) + (1− α)Φ(s2(t− βT ), ψ2) (2)

where α, β ∈ [0, 1) are uniformly distributed random values,
T is the maximum delay and Φ(·, ψ) is an equalizing func-
tion parametrized by ψ. In this work, we used a second or-
der parametric equalizer parametrized by ψ = (f0, g,Q) where
f0 ∈ [100, 6000] is the center frequency, g ∈ [−8, 8] is a gain
and Q ∈ [1, 9] is a Q-factor. An arbitrary number of such
synthetic samples can be obtained by randomly selecting pa-
rameters α, β, ψ for each data augmentation. We refer to this
approach as Equalized Mixture Data Augmentation (EMDA).

2.4. Multiple Instance Learning

Since we used web data to build our dataset (see Sec. 3.1), the
training data is expected to be noisy and to contain outliers. In
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Figure 2: Architecture of our deeper CNN model adapted to
MIL. The softmax layer is replaced with the aggregation layer.

order to alleviate the negative effects of outliers, we also em-
ployed multiple instance learning (MIL) [36, 37]. In MIL, data
is organized as bags {Xi} and within each bag there are a num-
ber of instances {xij}. Labels {Yi} are provided only at the
bag level, while labels of instances {yij} are unknown. A pos-
itive bag means that at least one instance in the bag is positive,
while a negative bag means that all instances in the bag are neg-
ative. We adapted our CNN architecture for MIL as shown in
Fig. 2. N instances {x1, · · · , xN} in a bag are fed to a repli-
cated CNN which shares parameters. The last softmax layer is
replaced with an aggregation layer where the outputs from each
network h = {hij} ∈ RM×N are aggregated. Here, M is the
number of classes. The distribution of class of bag pi is calcu-
lated as pi = f(hi1, hi2, · · · , hiN ) where f() is an aggregation
function. In this work, we investigate 2 aggregation functions:
max aggregation

pi =
exp(ĥi)

∑
i exp(ĥi)

(3)

ĥi = max
j

(hij) (4)

and Noisy OR aggregation [38],

pi = 1−
∏

j

(1− pij) (5)

pij =
exp(hij)∑
j exp(hij)

. (6)

Since it is unknown which sample is an outlier, we can not be
sure that a bag has at least one positive instance. However, the
probability that all instances in a bag are negative exponentially
decreases with N , thus the assumption becomes very realistic.

3. Experiments
3.1. Dataset

The proposed methods are evaluated on a novel acoustic event
classification database 1 harvested from Freesound [33], which
is a repository of audio samples uploaded by users. The
database consists of 28 events as described in Table 2. Note
that since the sounds in the repository are tagged in free-form
style and the words used vary a lot, the harvested sounds con-
tain irrelevant sounds. For instance, a sound tagged ’cat’ some-
time does not contain a real cat meow, but instead a musical
sound produced by a synthesizer. Furthermore sounds were
recorded with various devices under various conditions (e.g.
some sounds are very noisy and in others the acoustic event oc-
curs during a short time interval among longer silences). This
makes our database more challenging than previous datasets
such as [39].

1The dataset is available at https://data.vision.ee.ethz.ch/cvl/ae dataset

Table 2: The statistics of the dataset.

Class Total
minutes

# clip Class Total
minutes

# clip

Acoustic guitar 23.4 190 Hammer 42.5 240
Airplane 37.9 198 Helicopter 22.1 111
Applause 41.6 278 Knock 10.4 108

Bird 46.3 265 Laughter 24.7 201
Car 38.5 231 Mouse click 14.6 96
Cat 21.3 164 Ocean surf 42 218

Child 19.5 115 Rustle 22.8 184
Church bell 11.8 71 Scream 5.3 59

Crowd 64.6 328 Speech 18.3 279
Dog barking 9.2 113 Squeak 19.8 173

Engine 47.8 263 Tone 14.1 155
Fireworks 43 271 Violin 16.1 162
Footstep 70.3 378 Water tap 30.2 208

Glass breaking 4.3 86 Whistle 6 78

Total 768.4 5223

In order to reduce the noisiness of the data, we first normal-
ized the harvested sounds and eliminated silent parts. If a sound
was longer than 12 sec, we split the sound in pieces so that split
sounds were less than 12 sec. All audio samples were converted
to 16 kHz sampling rate, 16 bits/sample, mono channel. Simi-
lar to [34], the data was randomly split into training set (75%)
and test set (25%). Only the test set was manually checked and
irrelevant sounds not containing the target acoustic event, were
omitted. The data augmentation was applied only to the training
set.

3.2. Implementation details

Through all experiments, 49 band log-filter banks, log-energy
and their delta and delta-delta were used as a low-level descrip-
tor using 25 ms frames with 10 ms shift, except for the BoAW
baseline described in Sec. 3.3.1. Input patch length was set to
400 frames (i.e. 4 sec). The effects of this length were further
investigated in Sec. 3.3.2. During training, we randomly crop
4 sec for each sample. The networks were trained using mini-
batch gradient descent based on back propagation with momen-
tum. We applied dropout [40] to each fully-connected layer
with keeping probability 0.5. The batch size was set to 128,
the momentum to 0.9. For data augmentation we used VTLP
and the proposed EMDA. The number of augmented samples is
balanced for each class. During testing, 4 sec patches with 50%
shift were extracted and used as input to the Neural Networks.
The class with the highest probability was considered the de-
tected class. The models were implemented using the Lasagne
library [41].

3.3. Experimental Results and Discussions

3.3.1. State-of-the-art comparison

In our first set of experiments we compared our proposed deeper
CNN architectures to three different state-of-the-art baselines,
namely, BoAW [17], HMM+DNN/CNN as in [29], and classi-
cal DNN/CNN with large input field.

BoAW We used MFCC with delta and delta-delta as a low-
level descriptor. K-means clustering was applied to generate an
audio word code book with 1000 centers. We evaluated both
SVM with a χ2 kernel and a 4 layer DNN as a classifier. The
layer sizes of the DNN classifier were (1024, 256, 128, 28).
DNN/CNN+HMM We evaluate the DNN-HMM system.
The neural network architectures are described in the left 2
columns in Table 1. Both DNN and CNN models are trained
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Table 3: Accuracy of the deeper CNN and baseline methods,
trained with and without data augmentation (%).

Data augmentation
Method without with

BoAW+SVM 74.7 79.6
BoAW+DNN 76.1 80.6

DNN+HMM 54.6 75.6
CNN+HMM 67.4 86.1

DNN+Large input 62.0 77.8
CNN+Large input 77.6 90.9

A 77.9 91.7
B 80.3 92.8
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Figure 3: Performance of our network for different input patch
lengths. The plot shows the increase over using a CNN+HMM
with a small input field of 30 frames.

to estimate HMM state posteriors. The HMM topology consists
of one state per acoustic event, and an ergodic architecture in
which all states have a self-transition and equal transitions to all
other states, as in [30]. The input patch length for CNN, DNN
is 30 frames with 50% shift.
DNN/CNN+Large input field In order to evaluate the ef-
fect of using the proposed CNN architectures, we also evaluated
the baseline DNN/CNN architectures with the same large input
field, namely, 400 frame patches.
The classification accuracies of these systems trained with and
without data augmentation are shown in Table 3. Even with-
out data augmentation, the proposed CNN architectures outper-
form all previous methods. Furthermore, the performance is
significantly improved by applying data augmentation, achiev-
ing 12.5% improvement for the B architecture. The best result
was obtained by the B architecture with data augmentation. It
is important to note that the B architecture outperforms clas-
sical DNN/CNN even though it has less parameters as shown
in Table 1. This result supports the efficiency of deeper CNNs
with small kernels for modelling large input fields.

3.3.2. Effectiveness of large input field

Our second set of experiments focuses on input field size. We
tested our CNN with different patch size 50, 100, 200, 300, 400
frames (i.e. from 0.5 to 4 sec). The B architecture was used for
this experiment. As a baseline we evaluated the CNN+HNN
system described in Sec. 3.3.1 but using our architecture B,
rather than a classical CNN. The performance improvement
over the baseline is shown in Fig. 3. The result shows that
larger input fields improve the performance. Especially the per-
formance with patch length less than 1 sec sharply drops. This
proves that modeling long signals directly with deeper CNN is
superior to handling long sequences with HMMs.
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Figure 4: Effects of different data augmentation methods with
varying amounts of augmented data.

3.3.3. Effectiveness of data augmentation

We verified the effectiveness of our EMDA data augmentation
method in more detail. We evaluated 3 types of data augmen-
tation: EMDA only, VTLP only, and a mixture of EMDA and
VTLP (50%, 50%) with different numbers of augmented sam-
ple 10k, 20k, 30k, 40k. Fig. 4 shows that using both EDMA and
VTLP always outperforms EDMA or VTLP only. This shows
that EDMA and VTLP perturbs original data and create new
samples in a different way, providing more effective variation
of data and helping to train the network to learn a more robust
and general model from limited amount of data.

3.3.4. Effects of Multiple Instance Learning

Finally, the A and B architectures with a large input field were
adapted to MIL to handle the noise in the database. The number
of parameters were identical since both max and Noisy OR ag-
gregation methods are parameter free. The number of instances
in a bag was set to 2. We randomly picked 2 instances from
the same class during each epoch of the training. Table 4 shows
that MIL didn’t improve performance. However, MIL with a
medium size input field (i.e. 2 sec) performs as good as or even
slightly better than single instance learning with a large input
field. This is perhaps due to the fact that the MIL took the same
size input length (2 sec ×2 instances = 4 sec), while it had less
parameter. Thus it managed to learn a more robust model.

Table 4: Accuracy of MIL and normal training (%).
Single MIL

Architecture instance Noisy OR Max Max (2sec)

A 91.7 90.4 92.6 92.9
B 92.8 91.3 92.4 92.8

4. Conclusions
We proposed new CNN architectures and showed that they al-
low to learn a model for AER end-to-end, by directly modeling
a several seconds long signal. We further proposed a method
for data augmentation that prevents over-fitting and leads to su-
perior performance even when training data is fairly limited.
Experimental results shows that proposed methods significantly
outperforms state of the arts. We further validated the effective-
ness of deeper architectures, large input fields and data augmen-
tation one by one. Future work will be directed towards apply-
ing the proposed AER to different applications such as video
segmentation and summarization.
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